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1 INTRODUCTION

JASON was asked by the Department of Defense (DoD) to conduct an

evaluation of the nation’s ability to anticipate and assess the risk of rare

events. “Rare events” specifically refers to catastrophic terrorist events, in-

cluding the use of a weapon of mass destruction or other high-profile attacks,

where there is sparse (or no) historical record from which to develop predic-

tive models based on past statistics.

1.1 Study Motivation

This study was requested by the Strategic Multi-Layer Assessment (SMA)

program, which is part of the Joint Staff/J-3, STRATCOM/GISC, and the

Rapid Technology Program Office within the Department of Defense Re-

search and Engineering. The SMA program was established in 1997 in re-

sponse to the need for multi-agency and multi-disciplinary approaches to

support the ten US Combatant Commands in complex operations outside

their core competencies. One such area of complex operations that cuts

across the Commands’ expertise is dealing with the Weapons of Mass De-

struction/Terrorism (WMD-T) threat space.

The SMA undertook an effort in June of 2007, at the request of United

States Special Operations Command and United States Strategic Command,

to develop the foundation for establishing a sustainable, federated intelligence

community (IC) wide WMD-T intelligence and operations analysis enterprise

[3]. The goals set forth to SMA for the operations analysis enterprise are the

following:
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• Anticipate how terrorists are likely to acquire and use WMDs over the

next ten years.

• Provide means to target areas, entities and persons facilitating adver-

sary WMD courses of action.

• Characterize the global WMD-T environment.

• Identify and name areas, entities and individuals of WMD-T interest.

• Identify and prioritize WMD terrorist courses of action.

• Identify and prioritize collection requirements.

Specifically, the SMA was charged with the development of scientifically

sound theory and methodology, leading to a collaborative infrastructure to

accomplish those goals. This effort is on-going and has led to the request for

the JASON study.

1.2 JASON Study Charge

SMA recognizes that current practices rely on decision options generated

by a limited number of people with varying degrees of expertise, often with

access to classified information. Empirical predictive models are beginning

to be proposed for use to anticipate rare events, but the predictive accuracy

of these models is unknown. SMA has begun to engage with the academic

research community in developing predictive modeling approaches, and has

begun to develop collaborative experiments using strategic gaming methods

such as an upcoming Limited Operational Exercise 1.

1A Limited Operational Exercise is a multiplayer experiment designed to exploit and
study information sharing and collaboration[35].
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JASON was asked to evaluate the following:

1. Can it be done?

• Can one use scientific models to accurately anticipate the existence

and characterization of WMD-T threats?

• What current models are being used and how good are they?

• What metrics can one use to assess accuracy?

• Are studies in more measurable/quantifiable domains applicable

to threat event characterization?

2. Are collaborative experiments useful in this domain?

• Do experiments using collaborative processes test and improve

predictions of future rare event threats?

• Is there value in bringing outside experts into the process to gen-

erate actionable decision options?

• What should one hope to get out of these collaborative experi-

ments?

• How does one measure success of the collaborations?

3. Is academic expertise important in real time decision options formula-

tion?

• If having academic experts involved in a decision option model is

desired, how would one do it?

• Would this add noise or insight?

Early anticipation and amelioration of “rare events” raise questions that

are fundamentally about human behavior. This is the research domain of
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Table 1: Study Briefers

Hriar Cabayan (POC) OSD
Gary Ackerman START

Victor Asal University of Albany
Chris Bronk Rice University

Krishna Pattipati University of Connecticut
Paul Whitney PNL
Robert Popp NCI
David Lazer Harvard

Mike Stouder University of Michigan
Tom Rieger Gallup
Dan Flynn DNI

Susan Numrich IDA
Elisa Bienestock NSI

Joan McIntyre ODNI
Fred Ambrose USG

the social sciences. Special emphasis in the study will be placed on the role

of social science methods and expertise.

1.3 Briefers and Materials Reviewed

JASON was introduced to the problem by the briefers in the following

table. Materials recommended by the briefers, along with a wide range of

other classified and publically available materials were reviewed and discussed

by JASON. These included three key papers solicited by SMA [19], [21], [20]

and an extensive RAND report [26] on the topic.

Throughout our briefings is was stressed that countering WMD-T is the

joint responsibility of many agencies and organizations. Ideally, a federated

IC-Wide WMD-T intelligence and operations community should be able to

coordinate and integrate intelligence, define the operational environments,
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describe the impact of the operational environments, evaluate adversaries,

and determine adversaries’ potential courses of action.

In current thinking, WMD-T threats are often conceptualized as a com-

bination of intent, capability, and opportunity, where all three are required

for a WMD-T rare event to occur, so denying any one would prevent the

event. Another common conceptualization is in terms of where, who, what,

why, when, and how – locations of interest, groups or individuals of interest,

weapons they may use, their motivation, their operational timing, and their

process – where understanding these variables could help strategic planning

and allow for the development of tactics, training, and procedures [2].

The slide in Figure 1, presented to JASON [4], depicts the WMD-T “Op-

erational Spectrum” and represents the focus of SMA’s work. The goal is

to provide actionable intelligence to decision makers so threats can be accu-

rately anticipated and characterized “far left of boom.” Ultimately, the nation

needs a systematic method to prevent threats from evolving into actions and

if that fails, accurately attributing the actions to the correct sources. This

may require new degree of cooperation between intelligence analysts, outside

experts, and law enforcement.

1.4 Summary of the Study

The “rare event” of interest is an extreme, deliberate act of violence,

destruction or socioeconomic disruption, such as an attack of 9/11 scale or

greater. It is not a realistic goal to anticipate and prevent all rare events,

but it may be possible to make rare events rarer, and to reduce their effect.
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Figure 1: WMD-T Operational Spectrum denoting the focus of attention for
SMA.

A rare event is preceded by a chain of individually more likely develop-

ments that create intent, capability, and opportunity. Intervention may be

possible at many points in that chain – ranging from social policy decisions

that reduce the probability of radicalizing groups of people who may seek

violent means to express their grievances, to tactical intelligence and law en-

forcement that detects an imminent event and arrests would-be perpetrators.

If possible, quantitative analysis and mathematical models to objectively op-

timize intervention decisions should be used.

There are two principal problems in applying quantitative models to the

anticipation of rare events. One problem is that rare events are rare. There

will necessarily be little or no previous data from which to extrapolate future

expectations in any quantitatively reliable sense, or to evaluate any model.

In the extreme, how can the probability of an event that has never been seen

or may never even have been imagined be predicted? The second problem is

that the mechanisms at work are largely human behaviors, not just physical
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forces. This leads to the hope for quantitative social sciences models (e.g., of

causes), not only physical models (e.g., of physical consequences and dam-

age). Is it feasible to build useful social sciences models that can inform our

decision-making, given not only that the behavior of humans is immensely

complicated and unpredictable to begin with, but also that human adver-

saries (unlike physical disasters) will react and adapt to our planning to try

to make ineffective our plans to thwart them?

1.5 Overarching Conclusions

Predicting WMD-T rare events is obviously a desirable goal. This has

been stated many times by DoD, DHS, the IC, academic researchers, and

others. However, it is simply not possible to validate (evaluate) predictive

models of rare events that have not occurred, and unvalidated models can-

not be relied upon. An additional difficulty is that rare event assessment is

largely a question of human behavior, in the domain of the social sciences,

and predictive social sciences models pose even greater challenges than pre-

dictive models in the physical sciences. Reliable models for ameliorating rare

events will need to address smaller, well-defined, testable pieces of the larger

problem.

JASON recognizes the problem put forth is exceedingly hard. This report

will describe some possible paths forward. First, we give a concise response

to the three primary points in the Study Charge. This will be followed with

our overarching findings and recommendations.
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1. Can it be done? There is no credible approach that has been doc-

umented to date to accurately anticipate the existence and character-

ization of WMD-T threats. Experience from the natural sciences and

engineering provide guidelines for how to characterize certain aspects

of the risks involved, but are of limited value or applicability at the

present time. Social science approaches pursued to date are far less

well developed, and not even at the point at which their utility can be

evaluated, as currently applied. No reliable metrics of accuracy have

yet been identified, and there is a significant deficiency in applying

standard approaches from engineering and science such as false alarm

rates and signal detection in the face of massive clutter.

2. Are collaborative experiments useful in this domain? Collab-

orative experiments are of limited value because they are based on an

as-yet-unproven assumption that lack of communication and collabo-

ration is the key choke point in anticipating WMD-T threats. No clear

objectives or metrics have, so far, been identified for collaborative ex-

periments.

3. Is academic expertise important in real time decision making?

Area expertise and real-world experience appear to be highly valuable

in addressing the problem at hand. Some of this expertise is available in

academia, but not exclusively so. There is no evidence that academics

necessarily have better (or worse) capability in this regard.

The combined urgency of the rare event threat, the difficulty of evaluat-

ing rare event models, and the complexity of social sciences problems has led

some to advocate the suspension of normal standards of scientific hypothe-

sis testing, in order to press models quickly into operational service. While
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appreciating the urgency, JASON believes such advice to be misguided. The

threat of “rare events” will be with us for a long time. Like finding a cure

for cancer or predicting earthquakes, this is a difficult research area that

will most likely make progress in many small steps. Experience in the de-

velopment of many other scientific fields shows the importance of adhering

to rigorous scientific standards, so that small successes are tested, commu-

nicated, critically examined, reproduced, and built upon; thus a field as a

whole gains steady and lasting traction, even though near-term actionable

progress may seem elusive. Although patient husbandry of a long-term re-

search program may fall short of addressing the immediate operational needs,

JASON believes it is the best way forward for success in the long term.

Findings:

• There is a clear need to establish a solid, rigorous, long-term foundation

for applied research, development, and operations. This research will

be rooted in social sciences and involve academics.

• There is danger in premature model building and the use of such mod-

els, to the exclusion of careful data collection.

Recommendations:

• Evaluate how DoD program choices meet the best standards and prac-

tices in empirical research across all of science. This includes defining

baselines and measures of success.

• Clearly express the purpose of each activity in terms of the problems

being addressed.
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• Collect and share data within and between agencies, and with the aca-

demic community.

In this report, we expand on these general recommendations with the

following series of discussions.

Section 2: We discuss “motivation” as a useful addition to the intent/capability/

opportunity conceptualization, especially because some of the most impres-

sive social sciences research in our briefings and readings was more relevant

to motivation than intent.

Section 3: We discuss different types of scientific models, distinguishing

predictive models from “insight” models that build intuition, and distinguish-

ing point prediction models from risk assessment models. We emphasize ex-

amples of risk assessment models as an area from other fields in which the

probability of large rare events is usefully extrapolated from small common

events.

Section 4: We discuss some rules for evaluating the rigor of predictive

models and insight models, from a high level of scientific practice. We em-

phasize the availability of primary datasets as an important foundation for

any field, enabling others to reproduce and build on one’s findings.

Section 5: We discuss the importance of characterizing false positive pre-

diction rates (false alarms) in detecting rare events.
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Section 6: We discuss the strengths and limitations of strategic games to

generate insight, including red team exercises and the SMA’s planned Limited

Operational Exercise. We describe a game theoretic view of antiterrorism

defense.

Section 7: In the final section, we summarize JASON’s own past work on

one type of rare event scenario: bioterrorism.

Throughout, we frame most of our discussion of WMD-T threat assess-

ment in terms of related problems in the biological and physical sciences.

How are analogous “rare events” problems analyzed for natural catastrophes,

such as earthquake, wildfires, or weather forecasting? How are predictions

made and risks evaluated for rare events? When do physical scientists start

to develop models rather than emphasizing empirical primary data and intu-

ition? What different sorts of models do they build? How do they evaluate

whether these models are useful? From this standpoint, we discuss our view

of the current state of the art in applying quantitative models, frequently

from the social sciences, to “rare event” anticipation,2 and we discuss ways

to think about directing and evaluating a portfolio of research investments

in this area.

2We frequently encountered references to “Black Swans” in our study. The Black Swan
metaphor was popularized by a recent book The Black Swan: The Impact of the Highly
Improbable by Nassim Taleb [39]. The metaphor has clearly had great impact on how
people are thinking about rare events, so we considered Taleb’s argument carefully. This
discussion is included in Appendix A.
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2 MOTIVATION: “FAR LEFT OF BOOM”

Understanding intent has been proposed as a strategy to move “far left of

boom” in the anticipation of WMD-T rare events (see Figure 1). Specifically

what is meant by understanding and then measuring intent is not obvious.

The white paper From the Mind to the Feet: Assessing the Perception-to-

Intent-to-Action Dynamic [21] argues there is a lack of robust theories and

valid measures of intent. The definition of intent is given as “a determination

to act in a certain way for a certain purpose, a mental construct.” Part of the

ambiguity may be due to the fact that this conflates two different concepts:

“motive” (the purpose) and “intent” (the determination to act).

Perhaps there is a lesson to be learned from law enforcement and the law,

where motive and intent are distinguished. A grandson may be significantly

in debt, thus giving him motive to kill his rich grandmother. Until the

grandson actually decides to kill the grandmother, he does not have intent.

With this distinction in mind, much of the white paper ([21]) and of the

materials presented from the briefers in Table 1 actually has more to do with

motive than intent.

One reason the distinction is important is that specific intent is not only

difficult to determine, but also may be too “close to boom” to be useful for

strategic planning. Intent is more of a tactical intelligence question. Motive,

on the other hand, may be more measurable and actionable and be a more

suitable framework in which to think about “far left of boom” planning and

interdiction.
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Finding: Focusing on motivation as opposed to intent in the context of

WMD-T reduces the need to anticipate specific events, and is better suited to

a strategic rather than tactical approach to reducing rare event probabilities.

Recommendations: Add “motive” to the conceptual framework of intent,

capability, and opportunity.

2.1 Lessons about Motivation versus Intent

In this section we build a taxonomy for the understanding of motiva-

tion(s) that could lead to WMD-T threats. This taxonomy, given in Fig-

ure 2, should be useful for the organization and planning of data collection

and modeling efforts.

In law enforcement, evaluation of the potential for “rational actor” crimi-

nal activity is based on motivation, intent, target vulnerability, and guardian

capability [22]. Suppose we assume constant motivation for terrorists to in-

flect harm. The limit for carrying out intentions driven by constant motiva-

tion will be the accessibility of desirable targets and the vigilance of those

protecting the targets. Indicators of terrorist activity, in this case, will be

comparable to those of criminal activity. This is because terrorists will have

similar operational needs, including weapons acquisition, financing, false doc-

uments, sanctuary, support. Pre-empting terrorist action then can be based

on target prediction, monitoring, and disruption of operations components.

The consequences of constant motivation move across the bottom of Figure 2

and up the center.
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Using a deterrence perspective, the law enforcement procedures can be

augmented by understanding the nature of the non-constant motivation.

Two limiting cases distinguishing intent (actions) are those of actors driven

by strategic motivation, and those driven by internal logic [23]. Strategic

motivation is basically the desire to effect global political goals, and to do so

by manipulating adversarial political and social entities. For many terrorists

this would equate to imposing their worldview on others. In contrast, the

motivations of internal logic are driven by desired affects with the actors’

own political and social entity. In this case the internal goals may require

external actions, but the external impact is not an end in itself. For ter-

rorists this would equate to developing power within their own organization,

with internal status and recruitment of new members enhanced by exter-

nal actions. It also couples with externally frustrating actions directed at

preventing resolution of external conflict.

Using the deterrence perspective, prediction and pre-emption tactics can

be expanded beyond those based on a constant motivation model. Targets

can be differentiated by their strategic versus internal value. The intrinsic

value of strategic targets makes protecting them an effective way of frustrat-

ing strategic actors. In contrast it is much more difficult to predict or protect

the broad range of targets that may be attractive to an internal-logic actor.

The deterrence perspective moves across the top of the taxonomy in Figure 2

and down the middle.

A further useful distinction, based on a social science perspective, would

differentiate terrorist motivation in terms of ideologically-driven actors (as in

the deterrence perspective) versus actors driven by immediate social/material

needs. The non-ideological social/material actors (foot soldiers) can repre-

sent a pool of external supporters or potential recruits to an ideologically-
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driven group. Positively addressing their immediate needs, and thus reducing

their affinity to terrorist organizations, is a mechanism of deterrence. Under-

standing their perspective is a method of understanding target choice by the

ideologically-driven actors who wish to maintain their support. This social

component is shown in Figure 2 to feed the both law enforcement (constant

motivation) and deterrence (non-constant motivation) characterizations of

motivations.

Finally, it is important to understand the range of choices that are made

in assessing motivation and intent [24]. Analytical communities, charged

with rigorous assessment, tend to focus on capabilities analysis in which the

development of capability is equated to intent to use the capability. Decision

makers, those who must allocate resources to address the problem, are more

likely to focus on behavioral signals. These can run the gamut from negative

(e.g. suicide bombings) to positive (e.g. agreeing to discussions). Thus for

assessment programs to be effective in driving policy decisions, they must

address the full range of technical to behavioral aspects of terrorist activities.

This important concept is captured in Figure 2 along the right hand side.
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Figure 2: JASON Taxonomy for Measuring Motivation
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2.2 Detecting Sociological Motivations for Terrorism

One method of determining motivations for terrorism is to conduct opin-

ion polls that query attitudes of people in regions that have been a source of

terrorist activity. There are many organizations that poll world opinion. The

Pew Charitable Trust [16], World Opinion [14], and National Opinion Re-

search Center [17] conduct global surveys whose results are publically avail-

able. The START Center3 has conduced several polls across the Islamic world

[44, 45, 46]. Private researchers also conduct polls that include questions that

can be relevant for understanding attitudes toward terrorism. Gallup ([15],

[25]) has identified regions likely to become more unstable within the next

five years and have given clear confidence levels for their estimates. Expert

analysis of these polls may provide actionable information for governments

as well as providing questions that might be desirable to pose in future polls.

The opportunity to reduce terrorist attacks by changing motivation is

recognized by many governments around the world, and many governments

have vigorous deradicalization efforts [40, 41, 43]. There are programs that

work with people who have been detained in connection with terrorism inves-

tigations. The programs then use some combination of doctrinal revision and

rewards to induce the people to abandon violence. Other programs attempt

to dissuade people from terrorism using programs that are not targeted di-

rectly at individuals but address groups of people, where the groups generally

include people who are not at present members of terrorist organizations [42].

3START is the National Consortuim for the Study of Terrorism and Response to Ter-
rorism, located at the University of Maryland (http://www.start.umd.edu).
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These programs assume that certain attitudes are linked with a propensity

for terrorism.

2.3 Removing Opportunity and Capability

For an attack to occur motivation, intent, and capability must combine

with opportunity. It is possible to thwart an attack by removing any one

of these elements. Opportunity can be reduced by physical security. Gov-

ernments around the world are taking vigorous action to improve physical

security, where the security measures are based on assessments of previous

attacks and estimations of who is likely to commit the attack, where the

attack is likely to occur, and how it is to be carried out. It is certain that

these assessments do not include all possible devastating attacks. Section 6.3

gives a theoretical view of the allocation of physical security resources.

However excellent the existing physical security, it is still desirable to

develop techniques for avoiding attacks that do not involve our ability to

predict any details of the attacks in advance. Similarly, capability can be

reduced by controlling access to technical knowledge and materials, if one

assumes that we correctly envision the nature of those attacks. However,

there are many attacks for which capability barriers have become extremely

low, as in the case of biothreats (see Section 7).

Reducing the threat of a devastating attack by removing opportunity or

capability relies on the government having a good picture of the nature of the

attack. Predicting details of rare events can be very challenging, even in a

static environment where past data could be a good basis for future behavior.

Unfortunately, terrorist threats are dynamic and evolve precisely to counter

security measures. Predictions based on the past may lead to erroneous
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conclusions that lead to large resources being expended in ways that do not

reduce the threat of attacks. Even if the government has correct vision of

a possible attack, prevention through removing opportunity or capability

requires that the government control access to people, materials and venues

required for the attack. Except for certain special cases, such as a nuclear

attack, it is not possible for the government to control the access required for

that attack. Thus, it is desirable to search for a counterterrorism approach

that is not dependent on accurately predicting future attacks.

Eliminating the motivation removes all possible threats without requiring

any knowledge of the space of possible attacks and does not require that the

government control access, to people, places or things that might be used

in an attack. Eliminating the motivation for attacks offers a tremendous

advantage; however, this approach presents a challenge since is assumes that

there is a link between something that the government can manipulate and

the behavior of terrorists.
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3 MODELS

In all areas of study, many different kinds of models are used. It is

important to distinguish the use of models for providing subjective experts

with insight into a hard problem, versus the use of models that aim to make

objective predictions. For predictive models, there is a distinction between

models for probabilistic risk assessment on long time scales (the probabil-

ity that some event will happen in the next ten years, for example) versus

specific point prediction of individual rare events. Placing these topics in

the WMD-T threat assessment context leads to the following findings and

recommendations.

Findings:

• Social science-based models do not yet exist for anticipating and inter-

ceding in rare WMD-T events.

• It is unreasonable to aim for predictive models of specific rare events.

• Predicting human behavior and evaluating any predictive models of

rare events, predicated on human behavior, are difficult; however, pre-

diction of signatures of concern may be possible.

Recommendations:

• Frame issues such as training, operational planning, monitoring, and

mitigation in forms that allow (social science) models to tackle limited

goals, with well defined questions, and testable hypotheses.
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• Define how the model will help in decreasing the probability or impact

of a rare event.

3.1 Point Prediction Models of Rare Events

For rare events, by definition it will be impossible to validate any model

that seeks to produce specific point predictions of a rare event. This is

because by “rare event” we are talking about any event that hasn’t happened

yet and will only happen once. Even if we had a correct model, we won’t

know it’s valid until it’s too late to intervene in the event.

There may be one way forward for predictive modeling of rare events.

Suppose we assume rare events are drawn from a distribution that includes

other events that are sufficiently common that we can observe many of them,

enough to evaluate a model. We could, for instance, assume that small

observable events and large rare events are sufficiently related in their causes

that we are willing to assume large rare events are just the high-magnitude

tail of some underlying distribution of events. For example, imagine a (social

science) model that predicts a terrorist cell with actionable accuracy, without

trying to predict what event the cell might attempt to precipitate. We might

be able to find ways to evaluate such a model if we had access to enough

of the right sort of data on actual terrorist cells. We could imagine testing

interventions that reduce the number of terrorist cells, the probability of

events perpetrated by terrorist cells, or shift the event magnitude distribution

towards smaller events we can count and measure.

Such an approach sharply focuses one’s attention on the key assump-

tion: that the large number of countable small events share enough causal

similarity to a rare event that predicting small events corresponds to pre-
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dictability of large rare events. This assumption may be invalid – and if it

were, this would be impossible to know, for the same reasons that a model of

rare events alone cannot be validated. Nonetheless this suggests a way for-

ward for the expectations one might demand from predictive social science

models. First, a model should predict “small” events that occur with suf-

ficient frequency that the model’s predictions can be evaluated (validated).

Second, the model should explicitly relate the frequency of smaller to larger

events, so it can extrapolate to an unobserved tail of high-magnitude events.

Third, the assumption that the high-magnitude tail of rare events is drawn

from essentially the same distribution should be carefully considered. Such

predictive models would require good, large datasets of events and incident

data that enable event prediction.

3.2 An Example: Frequency/Magnitude Distributions

The approach described above is in fact commonly used as an approach to

rare-event problems in other fields. The area of safety has used this concept

since the 1950s, creating the safety pyramid, as given in Figure 3. This com-

munity has found causal relationships leading to the conclusion that small

accidents lead to medium accidents lead to catastrophic accidents. Eliminat-

ing the base of the triangle has become a best practice strategy for safety.

When the available data on event frequency versus magnitude shows a

simple relationship over a wide range of magnitudes, (e.g., if ten-fold larger

events are systematically a hundred-fold less likely), then we might feel rea-

sonably comfortable with extrapolating the tail of the distribution into pre-

dicting the probability of higher magnitude events beyond any events ob-

served thus far. This is not a point prediction model. It does not predict
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Figure 3: The Safety Pyramid

any single specific event at a specific time. Rather, it provides a quantitative

prediction of the probability that an event of a given magnitude will happen

within some (long) time interval. Unlike predicting individual rare events,

such a model can be evaluated for observable events, because it predicts that

future observed events will continue to follow the same frequency/magnitude

distribution. This prediction can be used to help guide decisions about de-

ployment of resources for risk management and attenuation.

One good example of this type of modeling is earthquake risk assess-

ment. If all that is known is that large earthquakes are possible, we might

worry that a “rare event” earthquake of enormous magnitude might occur

at any moment and utterly destroy an American city. How could we pos-

sibly plan for such an unknowable catastrophe? Quantitative prediction of

specific earthquake events is not yet achievable. However, earthquake mag-

nitudes are observed to follow a distribution called the Gutenberg-Richter

law, where ten-fold larger earthquakes on the Richter scale (Richter 8 versus

7, or 7 versus 6), are empirically observed to occur with ten-fold smaller fre-

quency. This probability distribution is also called a power law distribution

(also known as a Pareto distribution, or Zipf’s law). Figure 4, taken from
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[30], demonstrates this relationship for earthquakes in southern California.

Figure 4: Power Law for Southern California Earthquakes

Empirically observed frequency/magnitude distributions are one of sev-

eral factors used for quantitative risk assessment for different locations. The

US Geological Survey publishes earthquake risk assessments based in part

upon such distributions [29]. Building codes, insurance companies, and other

earthquake disaster preparedness and risk mitigation efforts take these pre-

dictions into account. (For an excellent introduction to power law distribu-

tions and several ways in which they may arise, see Newman [18].) A power

law is a “long-tailed” distribution, which means that rare high-magnitude

events will occur with far higher frequency than a “normal” (Gaussian) dis-

tribution would predict.

The model has caveats. First, it is a curve-fitting exercise, not a mech-

anistic physical model of earthquake geology. It is not entirely apparent

why the physics of earthquakes leads to this empirical distribution, and this

should induce distrust. Are the physics such that one really expects to ob-

tain this same distribution from every individual fault? Indeed, this is an

25



ongoing argument in the seismology community. Second, can we reliably

extrapolate the high magnitude tail into unobserved rare events? Clearly

there is a finite limit on earthquake energy, so the extrapolation must break

down. Third, are high-magnitude earthquakes caused by the same underly-

ing physical processes (drawn from the same distribution) as low-magnitude

earthquakes? Seismologists are divided on this issue. Fourth, at some point

we might want to worry that there is another unsuspected process that can

also produce a “rare event” earthquake, a process with extremely low fre-

quency but off scale magnitude when it occurs, e.g., the seismic shock of a

huge asteroid strike.

3.3 Power Laws and Rare Events

What relevance does this sort of probabilistic risk assessment have for

predicting “rare events” having to do with terrorism? Consider the following

reasonably well defined prediction question: what is the probability that a

terrorist event of larger scale than 9/11 (in terms of civilian fatalities) will

occur somewhere in the world in the next decade?

The frequency/magnitude distribution of terrorist events has been stud-

ied by Clauset, et al. [31]. Figure 5 shows the power law fit for terrorist

events between 1968 and 2006. The observed data empirically appear to fol-

low a power-law distribution. Clauset et al. [31] fit a power law of α = 2.38

to these data, indicating that events of 10x greater magnitude in terms of

deaths are about 240-fold less likely (10−2.38-fold). Is the 9/11 attack in New

York City (2749 killed)4, despite being an order of magnitude more catas-

4The MIPT database defines an “event” as a single target in a single city in a single
day, so 9/11 is recorded as three “events”: New York, Washington DC, and Shanksville
Pennsylvania.
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trophic in loss of life than any other large terrorist events (such as the 2004

Beslan school hostage crisis that killed about 400) an outlier on this fitted re-

lationship? Perhaps surprisingly, according to the power law distribution in

Figure 5 it was not. The probability of an event of 9/11 magnitude or greater

in the 1968-2006 period is about 23%, according to the fitted distribution,

(see Appendix B for this calculation).

3 
Figure 5: Power Law Fit to Deaths from Terrorist Events. Redrawn from
Figure 2 of [31].

A more detailed look at these data are give in Figure 6, from the same

study [31], where plots for injuries and total casualties are included. In this

figure, the tail of the observed data distribution even more clearly encom-

passes the 9/11 event in New York.

We haven’t quite answered the original question yet. The power law fit for

the data in Figure 5, shows the magnitude per event, not the number of events

per time. If we believe this fit and want to predict not only the magnitude of

the next event larger than 9/11 but also its probability of occurrence in the

next ten years, we need to factor in the frequency of events. The data in [31]
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Figure 6: Injuries and Deaths from Terrorist Events. Redrawn from Figure
2 of [31].

include 28445 recorded terrorist events (10878 of which killed or injured at

least one person, and 9101 of which killed at least one person), over a time

span of 38.5 years (1968 to mid 2006). If we assume that event frequency

is constant with time (more on this naive assumption later), this means

about 240 events per year, or 2400 events per decade. Clauset et al. [31]

doesn’t quite give enough information about their data or their power law

fit to reproduce their work exactly, but we can approximately deduce their

fit from the figure. With the estimate of events per decade and the power

law fit in Figure 5, we calculate that another 9/11-scale event in the world

is unlikely but not improbable in the next ten years. It has a probability of

about 7%, (see Appendix B for this calculation).

Now, let’s consider this prediction carefully. On the positive side, this

example shows that it certainly is possible to create a well-defined, empirical,

data-driven prediction of a rare terrorist event. It is the case that we can

make empirical statements about the probability of events so extreme that
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none have yet been observed, provided we assume rare events occur on a

continuum with more frequent events. On the other hand, how much faith

should we put in this prediction? We can use this almost trivial example

(the “model” has just three free parameters; two for the power law tail fit,

one for the event frequency per year) as a case study in how aggressively the

assumptions and predictions of a quantitative model should be dissected.

Do we really believe that event frequency is constant with time?

Probably not, although Clauset et al. [31] did look at sliding windows of two-

year intervals and found relatively little temporal variation on that scale in

the 1968-2007 interval. We should hope that the assumption is false, because

according to this model, a good way to reduce the probability of a rare event

is to reduce the frequency of all events.

Is there really just one frequency/magnitude distribution? Almost

certainly not; surely there’s really a very complex mixture of different dis-

tributions that happens to yield a smooth overall distribution. For example,

surely a terrorist’s choice of weapon must make a difference in the expected

number of casualties. Clauset et al. [31] show some analysis of this, breaking

their data down into explosives, firearms, blade weapons, and other types,

and they do find different distributions. Thus our single empirical distribu-

tion is really a mixture of different distributions. That’s all right, as long

as each component has been observed. But now suppose that another com-

ponent of our distribution tends to cause very high-magnitude events; is so

rare that it has not been observed yet; and is nonetheless not as rare as the

power law extrapolation suggests. An empirical distribution gives no insight

into the contribution of any rare unobserved components, and we may greatly
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underestimate the probability of this other very high-magnitude rare event.

Terrorist use of a nuclear weapon might be such an example.

Is this information actionable? This kind of “prediction” enables prob-

abilistic risk assessment, not point prediction of an specific event. Prediction

of specific earthquake occurrences is not currently possible. A risk assessment

model does not specifically tell us who, where, when, why, or how. Risk as-

sessment models are most useful for prioritization of different risk scenarios in

order to optimize resource investment. For example, earthquake risk assess-

ment is used to assign different levels of risk to different geographic regions,

and expensive earthquake-resistant building codes are implemented for high-

risk areas. To be useful in the WMD-T rare events context, a risk assessment

model would similarly need to be factored somehow into areas of differing risk

and differing resource allocation; perhaps by geographic region, perhaps by

some classification of terrorist group type, or perhaps into the type of event

(biological, chemical, nuclear, or unconventional attacks). It must be noted

that earthquake risk assessment models for different geographic regions do

not rely solely on earthquake statistics, but also on seismic fault mapping

and an understanding of the underlying physics; no such parallel exists for

terrorist behavior.

One of the basic difficulties in rare events scenarios, as demonstrated

above, is that we do not have enough data to fully sample the probability

distributions governing terrorist actions. This applies to the geographic dis-

tribution of terrorist events and to the event size distribution. In the face of

this problem, a standard idea is to appeal to Bayesian methods where a priori

information is used to augment small samples. In the technical note in Ap-

pendix C, we point out that there has been some progress on using Bayesian
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ideas to estimate the entropy of incompletely sampled distributions. The

entropy is directly tied up with the notion of predictability; the purpose of

the note, then, is to review these new ideas and suggest they be applied to

the problem at hand.

3.4 Insight Models

Predictive models are not the only kind of models scientists use. Insight

models are used to build expert intuition – such as visualizing complex data

sets, or just helping to modularize and structure the steps in a mental model

of a problem. Predictive mathematical modeling is the most scientifically

demanding way in which models are used, but it is probably not the main use

of models in science. The main use of models in science is to develop intuition

for hard problems. Models are used to illustrate, visualize, and analyze a

problem, to help human experts see patterns in data, and to systematize an

expert’s thinking in a way that might reveal key gaps in knowledge about

the problem.

An insight model need not be complicated. A simple systematic cartoon

on a napkin may suddenly reveal a missing facet of a problem. Other models

may be complicated. A red-team exercise may reveal an unanticipated vul-

nerability; an agent-based simulation may help illustrate inefficiencies and

bottlenecks in resource allocation; a social network analysis may help clearly

visualize a pattern of connections between people in a large dataset.

Experts develop their own ways of organizing and viewing their data as

they think about a problem - such as drawing cartoons showing relationships,

or developing a personal system of archiving and indexing data. Experts

develop these models for themselves, and they learn from the experience of
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other experts in their field. Because experts spend most of their time doing

their job rather than developing new tools, there is good reason to fund

free-standing research and development projects into new (insight) models.

From a programmatic standpoint of funding research, the main problem

with standalone research projects that aim to create new (insight) models

is that they separate the model’s creator from the model’s user community,

so they tend to face an adoption barrier. Experts are rightly skeptical of

new tools developed by non-experts, especially if a model appears complex,

mathematical, and highly abstracted rather than hewing closely to real-world

data analysis needs. Success of an insight tool should ultimately be judged

by how many experts use it and find it indispensable in their work. “Useful

to experts” necessarily includes many factors that become just as important

as the scientific validity of the model – issues such as software quality and

usability, in the case of computer models. Therefore an important part of any

research plan to develop new models is the researchers’ plan for collaboration

and adoption by experts. Will the tool be used and evaluated by real-world

analysts? Do they find it useful? Will it spread to other analysts if it is

successful?

Bioinformatics is an example of a field in which there is much research

and development of quantitative/computational models for hard, ill-defined

problems that may not be satisfactorily evaluated by their developers as ob-

jectively predictive, and where such models are instead best judged by how

useful experimental biologists find them to be in suggesting new hypotheses

and experiments. To prevent a natural tendency for model developers to co-

coon themselves into an isolated artificial community away from real-world

needs, NIH program officers demand concrete collaboration plans and evi-

dence that such models will be evaluated by their successful use in the hands
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of subject experts. For example, one recent NIH bioinformatics program

announcement includes the following language:

“ Given the expanding needs in biomedical research for advances

in a variety of areas of information science and technology, the

approaches and technologies proposed under this announcement

should ultimately be generalizable, scalable, extensible, and in-

teroperable. The projects should take into account the needs of

the biomedical research community that will be the ultimate end

users of the products of the research. The projects should also

address plans for ensuring the dissemination of useful products

of the research, including approaches, technologies and tools, to

the relevant research and user communities. The informatics and

computational research proposed should be future-oriented, fill

an area of need or projected need, and seek to exceed the current

state of the art. [NIH Biomedical Information Science and Tech-

nology Initiative (BISTI) Program Announcement PAR-07-344

Innovations in Biomedical Computational Science and Technol-

ogy [36].”

It is important to build a science base for the development and use of

insight models. Based on several reviews of social science research for rare

events ([26], [19], [21], [20]) there is little evidence the researchers build their

work on the work of others. Several briefers from Table 1 commented that

the sharing of data is strained. This is not an issue of collaboration. This is

an issue of one person’s insight or results feeding into the model and results

of the next researcher. This low degree of cumulative development collective

inhibits the establishment solid, accepted science base.
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We conclude this subsection with the following finding and recommenda-

tions specific to insight models.

Finding: Insight models are useful, but in a different way than predictive

models. Accordingly, they will be evaluated more subjectively, by how useful

they are to experts

Recommendations:

• Require developers of insight models to demonstrate the value of those

models by putting them in the hands of subject matter experts.

• Define how the model and knowledge gained from the modeling will add

value to the cumulative, community, understanding of the problem.

34



4 MODEL EVALUATION AND DATA Model

This discussion of model evaluation (validation) is prompted by claims

JASON encountered suggesting that theory in social sciences should be ex-

empted from the usual tests of a scientific theory. The following, from a

recent comprehensive report Social Science for Counterterrorism [26], are

excellent examples of what we heard.

“ Another theme of our work is that, even where the social sci-

ence is “strong”, the paradigm of reliable prediction is usually

inappropriate. Too many factors are at work, many with un-

known values and some not even knowable in advance. Except in

rare cases in which matters are over determined, there will be a

substantial “random” component in social behavior.”

“ The objective of analysis in social science should often not be

reliable “prediction”, but rather an understanding of possibilities

and perhaps of rough probabilities or odds.”

These statements are misleading because in fact, many scientific models

only make predictions in terms of probabilities, yet we still demand that the

predictions of such models be evaluated. This leads to the following findings

and recommendations, applicable to both predictive and insight models.
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Findings:

• Opportunities exist for development of formal quantitative and quali-

tative models for anticipating and interceding in rare events.

• Predicting human behavior and evaluating any predictive model of rare

events is difficult.

Recommendations:

• Tackle limited goals, with well-defined questions, and testable hypothe-

ses.

• Demand rigorous definition and evaluation of ALL models.

4.1 Model Evaluation

To apply a model in any meaningful way in science, including social

science, one should try to meet the following three principles:

1. A useful model should attempt to encapsulate, in some satisfactory

way, our scientific understanding of the underlying behavior.

2. The domain of applicability of any model must be specified.

3. The implicit assumptions of any model must be specified.

Some examples of unsatisfactory models which violates the first princi-

ple include models that violate any known physical laws or mathematical

theorems, models that are under-determined or that contain fudge factors
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that can be adjusted to give whatever result may be sought (rendering them

meaningless), and models that invoke components outside the realm of sci-

ence, such as inputs from religious belief systems.

All models are approximations. Otherwise excellent models that violate

the second principle and continue to be used outside their domain of ap-

plicability tend to generate incorrect answers. Examples include Galilean

relativity whenever velocities begin to approach those of the speed of light,

or representing light by rays that travel in straight lines when the dimensions

are either too small (because of diffraction) or too large (because of gravity).

The third principle reminds us that models are useful simplifications and

are therefore based on simplifying assumptions. Some assumptions are so

obvious that they occasionally go unstated, whereas other assumptions can

be very subtle and therefore hard to recognize. Assumptions affect the sec-

ond principle in a fundamental way: whenever the model assumptions are

violated, the model is not applicable.

Models that claim to be objectively predictive, or merely useful for pro-

viding insight to subject experts, must be rigorously evaluated. Quantitative

and qualitative models may use a wide variety of different mathematical ap-

proaches and representations, requiring a wide variety of technical expertise,

e.g., agent-based simulation, dynamic systems models, social network mod-

els, regression models, hidden Markov models, etc. Regardless of the specific

mathematical underpinnings of a model, the following questions should be

answered as a starting point for the evaluation of any model.
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• What specific problem is the modeling effort trying to solve?

• What simplifying assumptions does the model make?

• What information, quantitative and/or qualitative, will be used?

• Are the model’s inputs and parameters knowable quantities?

• How much do perturbations of the inputs and/or parameters affect the

model’s output predictions?

• How will the modeling add value to the cumulative understanding of

the problem?

It might seem that answering these questions should suffice for the eval-

uation of a model. However, there are more things to consider that have

subtle nuances depending the use of the model, for prediction or insight.

The following table provides the additional criteria.
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Models for Prediction Models for Insight
Have the predictions of the model
been compared to real-world data?

Have model insights been corrob-
orated with other models and ex-
perts? Do experts (other than the
models developers) think the model
helps them?

Were the test (validation) data inde-
pendent of any data used to develop
the model?

Has the model been used prospec-
tively on new data or problems, or
only on existing datasets where real-
world outcomes are already known
by the models developers?

When prediction accuracy is re-
ported, were all the model’s predic-
tions considered (both good and bad
ones), or does the investigator only
highlight successful predictions?

Do experts rely on the model to com-
mit to new operational decisions, or
do they only rationalize real-world
results against the model afterwards
with 20/20 hindsight?

Are the test data (which were al-
most certainly derived from an ex-
isting, retrospective dataset) accept-
ably representative of the future
events we want to predict?

Is the model capable of suggesting
a wide range of real-world outcomes
including counterintuitive surprises,
or does the model make assumptions
that build in a reassuring precon-
ceived bias toward an expected out-
come?

If the output prediction is subject to
uncertainty, does the model report
this uncertainty?

If the model (e.g., a strategic gam-
ing exercise) might yield a different
outcome if it is run more than once,
has it been run more than once to
see the range of possible outcomes?

Are the outputs actionable - does
the prediction suggest meaningful
ways of reducing the probability of
the event, or ameliorating its conse-
quences?

Does the model provide non-obvious
insights that help experts make bet-
ter operational decisions, or do ex-
perts do just as well without the
model?

It is surprisingly difficult to evaluate models, more specifically quantita-

tive models, reliably. The problem is that at any given time, it is only possible

to evaluate a model against events that have happened. It is surprisingly easy

to artifactually “predict” events after they happen. The various items listed

above help guard against different ways of fooling oneself.
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For example, it is common to split datasets into independent “training”

and “testing” data for parameterizing then evaluating a model. Insidiously,

this evaluation protocol only works once. If an investigator observes a result

on the test dataset and responds by doing more work and making “improve-

ments” to the model, now the test dataset has been used as additional train-

ing data, and the evaluation protocol is no longer reliable. One way to help

guard against this is sensitivity analysis. For example, if a model’s parame-

ters are overtrained (if they have inadvertently “memorized” the test data in

some way) sensitivity analysis may reveal that the model’s predictions seem

inordinately sensitive to an unreasonably precise choice of model parameters.

Another way that predictions are artifactually evaluated is when many

predictions are made, and only the successful ones are highlighted. A model

that has only 1% accuracy may still make a successful prediction if 100

predictions are made, perhaps in one paper, or perhaps in one lucky paper in

a field of 100 papers. (This concept is related to the topic of false alarm rates

discussed in Section 5). It is easy to focus retrospectively on the successful

prediction, and lose sight of the actual poor predictive accuracy of the model.

Rigorous effort must be made to define what specific predictions have been

made before evaluating their overall success or failure.

From a research program’s standpoint, it is essential to set the expecta-

tion that investigators evaluate their models. Because an investigator may

take all reasonable steps and still be honestly fooled (for models more com-

plex than simply predictable physical laws), it is also essential to demand

that investigators freely share their datasets to enable the performance of

different methodologies to be rigorously compared by independent investiga-

tors. Programmatically, these principles are the only way that a field gains

traction and moves forward toward building better models.
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4.2 Data

Data in and of itself is never useful, data must be coupled with a model

or models in order for it to provide actionable information. This coupling

occurs on many levels: determining what sort of data should be acquired

(e.g. family trees, website postings, phone logs); focusing resources on select

subgroups of data (e.g. only some website postings); and interpreting the

data (what level of risk is associated with a particular observable or set of

observables). The relationship between data and modeling is addressed in

this section.

Section 2 argued for adding motive to the WMD-T event assessment.

One advantage of shifting from a focus on intent to a focus on motivation is

that data on motivation may be more widely, openly, and eagerly distributed

than information in intent. Covert acquisition is not required, but raw data

alone is of no use, models, analysis and interpretation are required. Figure

2 provides useful and complementary shaping concepts for collecting and

categorizing information for evaluating the potential for terrorist action.

Oddly, counterterrorism is an area where there is both a paucity of data

and an embarrassing richness of data. There is a paucity in the sense that

there is almost no available data on major terrorist attacks. Evaluation based

on models matching such small data sets is almost silly. On the other hand,

there is a tremendous amount of data that might contain extremely useful

information, but which dominantly contains less useful information. For ex-

ample, video cameras recorded Mohammed Atta and the London bombers

before their attacks, but such cameras record many millions of images every

day. The clutter surrounding the useful data is so large that it is impossible

to separate out the meaningful information even when it is clearly available.
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Any algorithm that allows one to eliminate useless data would be extraor-

dinarily important since it would reduce the clutter that surrounds useful

data.

In data acquisition, different strategies are required depending on ones

models and goals. Three obvious levels of threat monitoring and countering

are:

• regions or groups considered likely to be the source of future terrorist

activity, (e.g. failed states, groups with serious ethnic grievances);

• actual particular organized groups with a known or suspected willing-

ness to commit terrorist acts, and

• individuals who have characteristics that are considered to create a

propensity for terrorist attacks, (e.g.,membership in organized groups

with known or suspected willingness to commit terrorist acts.)

For data at the level of regions and groups, public information, polling

services (see Section 2.3), and covert intelligence may all play a vital role in

acquiring information. For information on actual groups, polling data may

be available for political wings, but is unlikely to be available for the mili-

tant wings. However, militant wings often make public statements that do

provide substantial information about motivations and goals. Polling data

on individuals is meaningless. Open data on individuals is available in public

records. Some individuals, like Osama bin Laden, elect to make public state-

ments, but for many individuals public statements are unavailable. Thus,

data mining of public information and covert data acquisition may be the

most important tools for collecting data on individuals.
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Models developed for questions about terrorism may be based on many

factors. For example, some models suggest that the following factors play a

role in determining whether or not an individual person will commit a terror-

ist attack: attitude toward authority, religion, degree of devoutness, gender,

age, relationship with parents, familial structure, marital status, history of

aggression, employment history, education, drug use, group membership, pa-

triotism, reading habits, favorite websites, and hobbies. Some of this infor-

mation is readily available in the public record, and other parts, such as the

persons emotional relationship with his parents, may be unknowable without

substantial direct questioning of individuals. The NNDB 5 data base [12] is

an open website that posts much of this information about people who have

committed terrorist acts.

As stated earlier, model results depend on the assumptions underlying

the model. One of the largest assumptions is the universality of the data set.

Models gain validity by being tested against data that has never been seen. If

the data set is not universal, but contains particular elements with different

features, models will become very confused. Particular terrorist groups have

individual features that are particular to their goals and tactics. It is very

difficult to be certain that all of the data really belongs to the same data

set. It is not clear that information on the behavior of the IRA is universally

applicable to al Qaida, though some elements of tactics map very well from

one to the other.

Similarly, time is an important variable. Natural evolutions with time,

such as the advent of cell phone and internet technologies have radically

changed communications methods for terrorist groups. In addition, terrorist

5The actual validity of of the NNDB is unknown to JASON and should be evaluated
if these data are to be used in modeling efforts.

43



groups actively respond to countermeasure, as clearly demonstrated in the

IED problem in Iraq. Thus, using an old data set to project future behavior

may be produce erroneous results.

Data can never make recommendations. Carefully evaluated models are

required to convert data into recommendations. These recommendations are

best if the assumptions underlying them are made clear, and if the connec-

tions between the actual raw data and the recommendation are clearly laid

out with explicit statements of uncertainties. Data acquisition and modeling

will produce the most useful recommendations if they are focused on the spe-

cific questions being asked by policymakers. “Is building roads more impor-

tant than establishing dispute resolution mechanisms in villages?” This is a

much more tractable question than“What can we do to win in Afghanistan?”

“Does offering rewards to the families of people who renounce terrorism de-

crease the rate at which people return to terrorist activities after their release

from custody?” This is also much more tractable than “How can we end ter-

rorism?”

4.3 Data Sources

The availability and applicability of data sources for the WMD-T assess-

ment is of concern. Even for straightforward data-driven question as a plot

of event frequency versus magnitude given in Section 3.3, it was surprising

hard to obtain primary datasets and reproduce published results like the

power-law fit shown in Figure 5.

Several datasets of terrorist events have been collected. Only one, the Na-

tional Counterterrorism Center’s Worldwide Incidents Tracking System [8],

appears to be openly available. This database only covers 2004-present.
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Three datasets are available through a registration (subscription) request

process. These include: the Global Terrorism Database [10] from START6;

the ITERATE database [11] at Harvard University, and the RAND Cor-

poration Database of Worldwide Terrorism Incidents [9]. Another widely

used database, the Terrorism Knowledgebase at the Memorial Institute for

the Prevention of Terrorism in Oklahoma City, was defunded and closed in

2008 [6]. There are also at least three sources of “chronological narratives”

that provide more detail per event, but not in a parseable form: the State

Department’s annual reports, which track non-US events; the FBI’s annual

reports, which collected domestic events only, and appear to have ceased

in 2005; and the National Counterterrorism Center’s annual reports, which

started in 2007 and appear to cover all worldwide terror events.

Dataset availability, enabling reproduction and extension of published

research, is a significant concern in many other fields, particularly in other

highly empirical (data-rich/theory-poor) fields like the life sciences. A 2003

National Academy of Sciences report [5] affirmed the general scientific com-

munity’s expectation in the life sciences, if not all science, that

“... the general principle [is] that the publication of scientific

information is intended to move science forward... An author’s

obligation is not only to release data and materials to enable

others to verify or replicate published findings (as journals already

implicitly or explicitly require) but also to provide them in a form

on which other scientists can build with further research.”

This leads us to end this section with the following finding and recom-

mendation.
6A national consortium for the Study of Terrorism And Responses to Terrorism, a

Department of Homeland Security center of excellence at the University of Maryland.
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Finding: The availability of high-quality published datasets in social sci-

ences related to WMD-T appears to fall short of the open standards expressed

in this 2003 National Academy report [5].

Recommendation: Researchers should make their primary datasets openly

available to other researchers for reproduction and extension of results.
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5 THE FALSE POSITIVE PROBLEM

Any problem involving prediction of rare outcomes, including medical

diagnoses and disaster warnings, needs to pay careful consideration to false

positive prediction rates, i.e., false discovery rates. False discoveries lead

to false alarms. A model that overpredicts may be worse than useless, dis-

tracting planners and forcing expensive responses to false alarms. The same

should be true for the assessment of WMD-T events. In the terrorism lit-

erature there are may retrospective claims of successful “predictions” that

do not take into account how many other equally valid predictions had been

made, including claims about the events of 9/11.

Finding: Insufficient attention has been paid to defining false discovery

rate for any of the components of rare event assessment.

Recommendation: Require the evaluation of false positive prediction rates

for the putative rare event left-of-boom detection systems and of the impact

of these rates in a real-world deployment of the systems.

5.1 What are False Positives?

The working hypothesis underlying the SMA effort is that one can formu-

late a technical strategy which uses data from both public and other sources

and detects a terrorist group attempt to create a large scale incident. Need-

less to say, all this data will be buried in a very much larger data stream and

the problem at hand becomes very much a question of finding methods that
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can deal with rejecting the vast amount of background in favor of the signal.

Basic detection theory characterizes the functioning of this class of detection

strategy by means of the precision − recall curve which plots precision or

one minus the false positive rate, (1 -(false discovery rate)), versus the detec-

tion probability while some feature of the detector, perhaps the threshold at

which a detection is said to have occurred, is varied.

Figure 7 gives the definition of precision and recall, along with the curve.

This curve makes it clear that detection capability, as determined by the

probability that a true signal will be detected, is always balanced by the

probability that a false alarm will be declared. Without determining the

acceptable value of the false discovery rate, talking about detectability is

meaningless. One could declare all input data to be a detection and assure

that precision = 1, but without any useful discrimination capability. This

approach would be clearly useless, so it is never done. Instead, one gets the

kind of precision − recall curve shown in Figure 7, with precision < 1 at

recall = 0.

For a system that will be monitoring various signals in continuous time,

the correct measure becomes the false discovery rate. JASON found al-

most no discussion of what might be an acceptable value of this rate for the

WMD-T scenario of trying to use both public domain and intelligence data

to determine when a group has reached the stage where they both intend

to commit a major act and have established a plan to procure the necessary

materials. Since any discussion of detectability cannot even begin without

some notion of what is an acceptable false discovery rate, we find this to be

a major omission in the SMA framework.
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Figure 7: Precision-Recall Definitions and Curve

An interesting anecdote from earthquake detection illuminates the basic

point here. During the cultural revolution period, it became Maoist doc-

trine that earthquake prediction could obviously be accomplished through

the “unfailing efforts of the broad masses of people” ([27], [28].) During this

era the Chinese government made a successful prediction of a 7.5 magnitude

quake in the city of Haicheng, apparently based both on physical precursors

and on traditions regarding anomalous animal behavior prior to quakes (ac-

cording to some Japanese, catfish are more capable than seismologists for

predicting earthquakes). But, there was no prediction of the 1976 quake

that killed one quarter of a million people in Tsanghan. More to the point

here, there were over thirty cases of widely publicized earthquake warnings

in the late nineties, none of which proved accurate. The cost of these alarms,

in terms of evacuations and business disruptions were so severe, that the

Chinese government issued new regulations requiring “a high standard of
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scientific reasoning” for all predictions and furthermore introduced penalties

for inaccurate warnings.

As the above example illustrates, the cost of a false alarm depends on

exactly what will be done whenever an alert is triggered by the putative rare-

event “left-of-boom” detection system. Obviously, responses can range from

assigning a specific cohort of people to investigate the case more fully, all the

way up to a public disclosure and evacuation plans. It might be reasonable

for a system to have, just to pick a number, one false alarm per month if this

leads to activation of more serious (i.e. more expensive) tools and these tools

can decide if this was a true detection or not. But, this high order process

would need to be specified in terms of its precision− recall curve.

Once one has established a reasonable bound on the allowable false dis-

covery rate, one must attempt to maximize precision without violating this

constraint. This obviously places the onus onto developing a set of event

precursor signals which relatively uniquely point to a large, perhaps WMD-

T based, event in the offing. Exactly how hard or easy this might be to

accomplish is not at all clear, but the rarer the event, the more difficult this

will be.

There is a dilemma here in the terms of thinking about the connection

between rare events and more common terrorist events of much smaller size

and impact. As mentioned earlier, one possibility is that rare events are

just larger versions of typically-sized cases, the “largeness” coming from a

random assortment of factors that happen to make the consequences large.

The 9/11 attack might be construed as being of this form, as the size of the

casualty count was due to unforeseen cascading of factors (the destruction

of the building could not have been expected) and was ultimately limited

by the surprisingly efficient evacuation. An earthquake analogy here would
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be that large magnitude quakes arise from the same types of initial events

as is the case for typical events, but that there is a random cascading of

energy release due to unforeseeable details which is stopped by yet another

unforeseeable combination of factors. Evidence for this type of connection

might arise from having large events fall on the same size-frequency plot as

the small and medium sized ones, as discussed in Section 3.2. If this is true,

one can indeed use the more plentiful small events to extrapolate to what

might be seen for large events. But, given that they involve similar underlying

processes, there will be an issue discriminating on the basis of event size based

on early indicators. This appears to be one of the most severe problems in

using “pre-shocks” to predict earthquakes. This is because it is only apparent

after the fact which pre-shocks end in a whimper and which lead to a bang.

Prediction approaches which just raise the alert level based on the occurrence

of any sufficiently large shocks (the so-called automatic alarm strategy) are

plagued by unacceptable false alarm levels.

5.2 Strategies for WMD-T False Alarm Discovery

One strategy for having a meaningful detectability within the false alarm

constraint is to assume (or hope) that rare events really are of a different

breed. For example, one might postulate that WMD-T based events, es-

pecially including nuclear explosions, might just be completely different in

terms of the level of planning, the needed amount of information and material

gathering, as compared to run-of-the-mill TNT based attacks and therefore

one would be unlikely to confuse the respective indicators. However, we have

practically no data of real events upon which to base our detector strategy.

This means that we have to rely almost exclusively on theory-based scenarios
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and on lessons learned from artificial exercises such as the Limited Objective

Experiments (LOEs). LOEs, a concept introduced in 2001, are multiplayer

experiments designed to exploit and study information sharing and collabo-

ration ([35], [37]). JASON found WMD-T LOE concept and related games

do not appear to be optimally designed for the purpose of giving the neces-

sary insight into the false positive problem. (A specific WMD-T SMA LOE

will be discussed in detail in Section 6.1).

Given the lack of real-world examples of the type of rare events under

consideration here and given the hope that they are actually distinguishable

from the large background, red-team based games play an essential role in

figuring out what may be possible. Games solve the problem of not having the

ability to reconstruct all the events that occurred prior to a specific attack

in the past (and the even more serious problem of wanting to understand

possibilities for which we have no prior data) by erecting a managed time

line in which events are arranged to occur in a manner that allows for capture

of all possibly relevant information available prior to “boom”. Given that

these games last for a short period of time, the rate of event occurrence within

the game are wildly unreasonable. For example, during the SMA LOE no

fewer than three events are supposed to either occur or be in progress. This

converts the detection problem into an “answer in the back of the book”

exercise because all participants know that there is a real event buried in the

data as opposed to the real-world case where there will almost always not be

a real event embedded in the ingested data at any given point in time.

The other difficulty with the LOE style exercises from the point of view

of detection theory is that the game is built upon the pre-conceived notion

that the road to detection is via collaboration. Essentially, enough informa-

tion which taken together as a clear attack indicator is distributed piecemeal
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to the participants. If they can figure out how to collaborate so as to gather

more of the puzzle, they can detect the planned event. The game is a scav-

enger hunt for the right clues. This idea seems to be based on impressions

that the real problem of predicting 9/11 was that different agencies had dif-

ferent parts of the complete picture and if these pieces had been combined

(i.e., had only the administrative barriers been absent), the attack would

have been detected and prevented. This might be true but just as likely

might not be.

As we have already discussed, it is always possible to pick out the impor-

tant clues retrospectively, just as it is always possible to pick out pre-shocks

of a large quake. Whether they are unique enough to find them out of the

background needs to be tested in a game that has realistic ratio of true clues

to false ones and where the correct answer most of the time is that there is no

imminent, credible threat. Perhaps the fact that the infrastructure developed

for the LOE will be maintained for continuing use can be utilized to run the

game many times over, with events inserted only sparingly, and with a more

dynamic red team involvement. This would allow one to move away from a

pre-determined scenario of what needs to be detected. Having a dynamic red

team would help address the obvious concern that terrorist planners would

arrange their actions so as the generate as few observable signals as possible.

In some cases, they might even produce false signals on purpose to try to

create false positives to cause us to raise our detection threshold.

One interesting direction for future work might be to embed rare event

detection games into virtual worlds such as Second Life [33]. In fact, there

have already been examples of terrorism in these games. For example, the

Second Life Liberation Army has a list of grievances against corporations

who have populated this digital universe and have staged a series of bombing
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attacks [38]. From the rare-events perspective, these multiplayer role-playing

communities are more natural settings for social experiments than are the

one-shot constructions used for the LOEs. One might therefore imagine

working together with the companies that manage these games, Linden Labs

[34] in the case of Second Life, to develop a terrorism detection capability,

either using actual in-situ terrorist groups or via inserting red teams designed

for this purpose. The fact that these multiplayer worlds would have millions

of participants and are ongoing enterprises might allow for an evaluation of

detection algorithms under much more sociologically realistic conditions.

There is one point at which the direct analogy with detecting physical

signals breaks down making the WMD-T problem even more difficult. Absent

theories of a malevolent deity, the earthquake is not aware of our ”left-of-

boom” detection attempts and does not work to oppose them. Yet, this

is exactly what might be expected of a terrorist group if the methodology

being used to detect planned incidents becomes known to it. To take a simple

example, Mohammed Atta was quite visible on the video camera of the Maine

airport when he entered security, but there was no way to attach significance

to this image in the midst of an enormous number of a priori identical ones.

Imagine that it was known to, or even just assumed by, the terrorist group

that a highly accurate biometric system was able to detect everyone on a

watch list that passed through an airport and that such an event would

cause an airport shutdown, preventing any airplane hijacking. Even assume

that we were willing to live with the enormous numbers of false alarms such

a system would create. Any terrorist would then be strongly motivated to

engage in simple acts of deception such as facial disguise that would defeat

the detection strategy. In that case, and if there is enough time to plan

counter-moves, game theory predicts that the detection problem becomes
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essentially unsolvable. This is discussed in detail in Section 6.3.

Charles Richter, probably the most well-known American seismologist, is

alleged to have said “No one but fools and charlatans try to predict earth-

quakes”. Much of the work on rare terrorist events seems to take for granted

that “the truth is out there” and we can discover it in a sufficiently timely

fashion with the right mixture of motivational assessment, social network

analysis, capability measures etc. Perhaps this is the only approach which

is politically defendable, but it may be the case that achieving a high prob-

ability of detection in the presence of an immense background and in the

presence of informed terrorist attempts at signal concealment is simply not

attainable without having such a high false positive rate as to make nor-

mal life impossible. The lack of attention to any quantitative measures of

this problem makes it impossible at present to assess the likelihood of this

pessimistic possibility.

5.3 Lessons Learned from Near Earth Objects Com-
munity

Another community worth drawing some useful analogies from, in the

context of WMD-T detection and information sharing is the Near Earth Ob-

ject (NOE) Community. The NEO community includes two groups of people,

astronomers who study the population of natural objects in space close to

the earth, and concerned citizens who study the consequences of collisions

of such objects with the earth. The main data-base of the NEO commu-

nity is the International Astronomical Union Minor Planet Center (MPC)

at Harvard University. The MPC makes public announcements when new

NEO are discovered and when observations of NEO are made which allow
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the probabilities of impacts to be calculated. NEO impacts are like terrorist

attacks in causing major catastrophes with low probability and minor catas-

trophes with high probability. NEO impacts differ from terrorist attacks

in having probabilities that can be accurately calculated from observations

of the NEO orbits. Another difference between impacts and attacks is the

contrasting attitudes of the two communities of experts toward sharing of in-

formation. The experts on terrorist attacks, who mostly belong to national

police or intelligence organizations, are traditionally secretive and maintain

data-bases which are compartmented and not widely shared. The NEO com-

munity has a long history of cooperative sharing of information, starting in

the year 1801 when the first asteroid was discovered.

Especially in Europe where modern astronomy began, skies are often

cloudy, and the discoverer of a new object depends on foreign colleagues to

keep the object under continuous observation and establish its orbit. An

important event in the history of astronomy was the successful laying of the

Atlantic telegraph cable in 1866. As soon as the cable was working, the

Astronomer Royal in London and the director of the Harvard College Obser-

vatory in Massachusetts began to use it to send regular telegrams reporting

new discoveries on both sides of the ocean. In 1882 an official institution for

the international sharing of information, the Central Bureau for Astronomical

Telegrams (CBAT), was established with headquarters at the Observatory

in Kiel, Germany. The CBAT still exists, although it now distributes an-

nouncements of new discoveries over the internet instead of by telegram, and

its headquarters is now at the Harvard College Observatory. The MPC and

the CBAT work side by side, the MPC collecting information about small

objects in the Solar System, and the CBAT collecting information about the

rest of the universe. The tradition of openness and prompt international
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cooperation, epitomized by the CBAT, has been maintained by the NEO

community. Nothing comparable exists in the community of experts on ter-

rorism.

A typical NEO is discovered with a poorly determined orbit which gives

it a low probability of impact. As time goes on, new observations are made,

the orbit becomes more precisely known, and the probability of impact slowly

increases. Then rather suddenly, the orbit becomes so precise that the prob-

ability of impact becomes either one or zero. In the vast majority of cases,

the probability becomes zero and the object misses the earth. For the typical

NEO, the probability of impact rises slowly to a small maximum and then

falls abruptly to zero.

Both for impacts and for attacks, any attempt to give advance warning of

catastrophic events to public authorities is bedeviled by the problem of false

alarms. After a few episodes of disproportionate response to alarms that turn

out to be false, public authorities cease to respond seriously to alarms that

may turn out to be true. To deal with the problem of false alarms, the MPC

invented a scale called the Torino scale which is supposed to describe the

magnitude of the risk of impact posed by each NEO. The risk is measured by

a single number which combines the size and the probability of the impact.

Each announcement of discovery or observation of a NEO is accompanied by

a number on the Torino scale which begins low and rises slowly, so that there

is no sudden alarm. The Torino scale was introduced in 1999 and replaced by

another more accurate scale called the Palermo scale in 2008. The Palermo

scale is still a single number, but it takes into account the date of a future

impact as well as its size and probability. As the date comes closer, the risk

becomes more urgent, and the number on the Palermo scale becomes larger.
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Although the Palermo scale gives increased emphasis to near-future im-

pacts, it remains true that the very large far-future impacts usually dominate

the overall estimates of risk. At the present moment the dominant risk on

the Palermo scale is associated with asteroid 1950 DA, a kilometer-diameter

object which is calculated to impact Earth in the year 2880 with probability

0.003. Fortunately, we have plenty of time to measure the orbit more accu-

rately and to see the probability of impact rise to one or fall to zero. In case

the probability rises to one, there will probably still be time to deflect the

object with a small steady thruster powered by solar energy, to make sure

that the object will miss the Earth. The power required to do the job is only

a few kilowatts if the thrust is maintained for 400 years.

Unfortunately, the study of terrorist attacks is not an exact science like

celestial mechanics. There is no Palermo scale which allows us to identify a

dominant risk of a catastrophic terrorist attack 800 years in the future. But

the study of NEO impacts may still teach us a useful lesson for dealing with

the problem of terrorism. The lesson is to think of the problem with a time-

horizon of centuries rather than years. The dominant risks of terrorist attack

may come from large-scale and devastating attacks far in the future, and we

have a better chance to avoid such attacks by long-range transformations of

society than by short-range tactical counter-measures.
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6 GAMES AND GAME THEORY

The previous section began a discussion of the need for games and ex-

pertise for the study of detection rates of rare events. We take a deeper look

at these issues here. In addition, we develop a game theoretic framework to

model defenses against WMD-T events.

6.1 Limited Operational Exercise

JASON reviews an upcoming limited operational exercise (LOE) spon-

sored by SMA. This is an example of the use of a multiplayer game to in-

vestigate aspects of the rare events detection process. This exercise involves

individuals from a variety of government agencies who will play two hours

daily for a month. The idea behind the game is to introduce information

regarding terrorist attacks into otherwise normal data streams and see to

what extent information-sharing among the participants can be used to put

together pieces of the “puzzle” and decipher the clues.

There are certain aspects of this exercise which are quite interesting and

well-thought-out. The idea of embedding the clues into a web portal system

which mimics the normal work environments of different analysts is a major

improvement over the more artificial interfaces typically encountered during

games. The use of the real internet “swamp” as the playing ground allows

for a realistic “clutter” against which the signal must be detected. Also, the

game will last for one month, as distinct from the more typical ones which

just take a few days, allowing for a somewhat more realistic timeline for

scenarios to unfold.
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What will be learned from the LOE and equally important, what will

not be learned? The LOE designers have postulated that left-of-boom de-

tection is similar to a puzzle in which the main challenge is for individuals

to find pieces and then identify and communicate with other players so as to

collaboratively put the pieces together to solve the puzzle. In other words,

the hard part of the problem will be to identify who among the other players

can help an individual notice and then interpret information that they have

stumbled across, which by itself would not be sufficient to understand what is

going on. What can be learned from this relates to institutional boundaries

for information sharing, the possible types of incentives that could be used

to overcome these barriers, and more generally the type of social networks

that would “self-organized” in response to the posed challenge. As a social

science experiment it seems well-designed and well-implemented. Also, as a

response to the folk wisdom that the lack of inter-agency information shar-

ing was a major contributor to the 9/11 intelligence failure, it seems useful.

There are many important issues that will not be addressed by this LOE.

These include:

• There is a difference between information-sharing and collaboration.

The latter involves much more than looking someone up in a directory

and sending them a request for information or a request to help inter-

pret some data. Especially when individuals start out with different

areas of technical expertise, it can take many exchanges over long peri-

ods of time to reach a true collaboration in which truly interdisciplinary

issues can be addressed. This has been the experience of all scientists

who work at disciplinary boundaries. If the rare-events detection pro-

cess actually requires interdisciplinary collaboration (a reasonable
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hypothesis), the LOE will fall short in providing information regarding

how to create such collaborations.

• As mentioned in the previous section, the rate at which events occur in

the LOE belies the notion that it is a mechanism by which we can study

rare events. It will not lead to any quantifiable estimates of detection

probability and false positive rates.

• There is no active red team involvement. Red teams are necessary

in order to capture the feedback dynamics by which terrorist groups

modify their plans and methods (and hence the detectable signals they

generate) in response to their perception of the blue team’s counter-

terrorist strategy. This feedback makes the detection problem much

harder than might be the case for physical examples of rare events (for

example, increased surveillance could be counter-detected and could

lead to measures being taken to disguise planned actions) and also

may have surprising consequences for very long term prediction (i.e.

prediction based on an analysis of motivation and capability, in the

absence of any specific actions that might be detected); this will be

discussed from the perspective of game theory in a later section.

Our fundamental recommendation is that the SMA should develop addi-

tional exercises that focus on some of the issues not addressed by this LOE

and should carefully consider how each game will lead to increased insight.

The fact that the enabling technology for the LOE will be maintained should

provide invaluable in this regard. This discussion leads to the following find-

ing and recommendation.
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Finding: Focus seems to be on only a limited number of the compelling

issues.

Recommendation: Make clear statements about what is to be learned

from the exercises and expand the potential set of issues to study.

6.2 Red Teams

Here we discuss more specifically some of the issues that arise upon con-

sideration of red teams (RTs) and games. It is clear to us that games in

general and more specifically strategic games involving RTs should be uti-

lized to help with WND-T rare events assessment. The basic idea is to form

teams (typically 6-10 people) who can accurately represent the culture, mo-

tivations, and capabilities of a terrorist planning group (TPG). If this can be

accomplished, the actions of the RTs can assist in following aspects of the

problem.

• RTs can help discern TPG priorities among various targets as objects

of large scale terrorist attacks. This type of assessment does not involve

detecting actions that arise as part of an actual planned attack, but

instead tries to use expert information regarding terrorist motivation

to prioritize various targets. As will be seen in the next subsection, this

type of information is extremely important when planning our defensive

strategy.

• RTs can help determine potentially observable physical signals of TPG-

directed pre-event activities. This should be done in the context of
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background clutter, which may make observable signals difficult to no-

tice.This is certainly a necessary part of any detection scheme.

• Unlike the case for physical events such as earthquakes, TPG can react

to defensive activities (e.g. changing local defenses of certain attractive

targets or better monitoring by us of some TPG activity) at various

stages in their pre-event attack preparations. Red teaming is basically

the only viable approach for understanding these feedbacks.

Forming optimally useful and reliable RTs is crucial to these goals. Im-

portant questions remain to be answered. How big should a RT be? Should

it be about the size of the TPG or larger to encompass more possible view-

points? How many independent RTs should be formed to choose and plan a

future large impact terrorist event? Differences among RTs in making event

priority lists would indicate the uncertainties we should assume in predicting

TPG intentions and event choices. What are the personnel and budgetary

constraints on this number?

Perhaps the most crucial question is what criteria should be used in

choosing RT members? Large differences may exist between the TPG to be

imitated by the RT and the pool of experiences from which the RT members

are typically chosen, (e.g., cultures, religions, possible fanaticism, upbringing,

ethnicity, etc.). Special efforts should be taken to minimize these differences

by including experts in the relevant foreign culture(s) in the RTs. However,

it was cogently argued in a JASON briefing that it is even more important

that the RTs reproduce a narrower “professional culture” of the TPG they

want to imitate (e.g., knowledge, experience, skills, education, training, and

contacts).
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The optimal composition of the RT may also depend sensitively on which

special stage in the long life of the TPG one is trying to mimic. The TPG

may initially form with the objective of simply deciding the nature and future

timing of a large scale terrorist event. After this stage, the original TPG

may then invite others to join with special expertise, (e.g., experience in

explosives, or biological weapons, or radiological ones, others who know more

about the defense of special targets in the US). All of this planning may take

many months, perhaps even a few years. At that point, some of the earliest

TPG members may no longer be part of group, at least not as active decision

makers. How should the RT best accommodate these changes? How best to

choose and perhaps change RT composition in a group that probably meets

together over a small time interval,very much shorter than that of the TPG

group it tries to imitate.

One may be optimistic that future studies optimizing RTs would give

more reliable answers to some of these questions than is available today.

As we have argued, these could have very important consequences for some

studies of the risk and or predictability of terrorist initiated rare events. This

leads to the following finding and recommendations.

Finding: Crucial questions about size, composition, and duration of red

teams remain open.

Recommendations:

1. Optimize the structure and use of red teams, both strategically and

tactically.
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2. Replication of exercises is essential to documenting the reliability of

the results.

6.3 Game Theory

One approach to the rare event problem is to try to predict based on ter-

rorist culture and motivation exactly which targets would be most tempting

as a venue for a large-scale attack. This type of prediction would require

bringing in relevant social science experts and working on a better under-

standing of motive and how different target choices might be better or worse

choices. We would then allocate our defensive resources to try to counter

those attacks, obviously concentrating more resources on more likely high-

value targets. But, it is vital to recognize that the problem is not just “feed-

forward”. The terrorist recognize what targets we are defending and change

their attack priorities accordingly – it would be better to have an assured

success with a second or third choice target than to have a negligibly small

chance of hitting the big one. If there is enough time, the two sides will reach

an equilibrium of defensive choices versus target list. This can be analyzed

by the methods of game theory. The interesting result that will emerge be-

low is that the predictability leverage that exists is solely due to differences

in perceived target value and that therefore is an area towards which social

science research should be directed.

6.3.1 Undefended target values and zero sum

Explicitly or implicitly the terrorist assigns values Vi, i = 1, . . . , N to the

targets, and also evaluates probabilities pui that an attack will be successful
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Figure 8: Potential terrorist targets are ordered by “net” value vi and plotted
on a logarithmic scale. Here we assume that we and the terrorist agree on
the value of each target (zero sum assumption).

in the case of the target being undefended. Taking these probabilities into

account, the expected value of each undefended target to the terrorist is

vi ≡ puiVi. (6-1)

Of course, real terrorists may not be motivated exactly by linear expectation

value. So, in what follows, we’ll only use the values vi, not Vi, with the

understanding that the vi’s are the “net” values to the terrorist of undefended

targets, after taking into account the probability of success.

In this section we explore the case where the game is zero sum. That

means that we and the terrorist are in agreement on the values vi. Any gain

for the terrorist is considered to be an identical loss to us. In Section 6.3.2

we’ll relax this assumption, with interesting consequences; but it is useful to

understand the zero-sum case first.

Figure 8 shows a notional plot of the values vi of targets, plotted on a

logarithmic scale and ordered from most to least valuable.
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Model for Defense with Fixed Total Resources: As a toy model,

suppose that we have a fixed quantity D of total resources for defense, and

that it can be allocated to individual targets in amounts di, with

∑
i

di = D. (6-2)

We want to model target defense in a way that captures, if crudely, the ideas

of (i) diminishing returns on a given target as we (over-) defend it, and,

not unrelated, (ii) layered defense, where resources are allocated for defenses

that come into play only after other defenses have been breached. One way of

doing this is to model defense as decreasing the effective (expectation or net)

value of a target to the terrorist exponentially with the amount of defense

allocated to it. That is,

vei = vie
−di . (6-3)

This model could, of course, be improved by putting target-dependent con-

stants also into the exponential. However, Equation (6-3) has a particularly

easy graphical solution that will illustrate some generic features.

Nash Equilibrium Solution In general, two-person zero-sum games have

a Nash equilibrium that is optimal for both players [51]. That is, neither

player can do better by departing from the Nash equilibrium solution, so

both players will rationally adopt it. And, if one player is less than rational,

the other can only benefit.

Figure 9 shows the geometrical construction of the Nash equilibrium for

the game that we have defined. It works conceptually as follows:

• Start by applying defense to the highest value target v1, thus pushing

down its value to the terrorist. Because we have plotted target values on
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Figure 9: Construction of the Nash equilibrium defense for the targets shown
in Figure 1. See text for details. Notice that at Nash equilibrium, multiple
targets have identical attractiveness to the terrorist.

a logarithmic scale, Equation (6-3) implies that the amount of defense

used is proportional to the distance that we push down the value on the

graph. In this, and any subsequent step, stop when you have exhausted

your supply of defense D.

• When v1 has been pushed down to make v1 = v2, apply any remaining

defense resources equally to push down v1 and v2.

• Ditto when v1 = v2 = v3, apply remaining incremental resources to all

three.

• And so on, for increasing vi’s with increasing i until all resources are

exhausted. In Figure 9, this occurs when incremental defense is being

applied to points 1–4, but before they have been brought down to the

level of point 5.

Why is this the Nash equilibrium? Because any other strategy of allo-

cating the di’s would result in an end state with at least one higher (and

highest) vi, which, being the highest net value to the terrorist, would be

attacked, producing greater loss to us than the Nash equilibrium strategy.
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The terrorist’s Nash strategy is to choose randomly among the defended

targets (1–4 in the Figure) and attack that one. He can only do worse by

attacking an undefended target, such as 5, so he has no reason to do so.

Predictability and Nash Equilibrium Before we applied any defenses,

the toy model had a high degree of predictability: The terrorist will likely

attack target 1, the highest value. If he attacks any other target, he achieves

less.

After we apply defenses in the optimal Nash strategy, we know that the

terrorist will attack one of the sites that we have optimally defended, but

not which one. The fact that we don’t know which defended site will be

attacked is not an artifact of the toy model, but a very general feature of

an optimized defense. The defense wouldn’t be optimal if any predictability

were left, because then we would be better off adding a bit of defense to the

predicted target.

The important lesson is that when we and the terrorist agree on the

value of targets, the more we optimize our defenses, the less we will be able

to predict where an attack occurs. Incidentally, we also know that attacks

on undefended targets are, paradoxically, unlikely, because their comparative

values remain lower than any defended site.

6.3.2 Non-zero sum is different

We now look at the case where individual targets are valued differently by

us and the terrorist, so that the game is not zero-sum: Depending on which

target is successfully attacked, we may lose more or less by our evaluation

than the terrorist gains by his.
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Figure 10: Notional target values that are different for us (black dots) than
for the terrorist (green crosses). In this example, target 1 has the highest
value for us, while target 2 has the highest value for the terrorist.

Value Gaps Figure 10 shows a notional non-zero sum case. The black dots

(same as Figure 8) indicate our values for each target. The green crosses show

the values to the terrorist, which can be greater (target 2) or less (target 1)

than our values. As shown, before the application of defenses by us, the

terrorist will attack target 2, because any other target has smaller value.

Thus, to the extent that we can understand the terrorists values, we have

perfect predictability.

Avoiding Unfavorable Degeneracy Because we know that target 2 will

be attacked, the most efficient initial allocation of defense resources it exclu-

sively to that target. We increase defenses until the green X is lowered to

(almost) the level of the next highest green X, which is that of target 1. This

is shown in Figure 11.

Notice what happens if we defend target 2 (red X) all the way to the

(green X) value of target 1: The terrorist is now indifferent as to whether to

attack target 1 or target 2. However, we are certainly not indifferent, since

target 1’s value to us (black dot) is much larger than target 2’s defended value
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Figure 11: Initial allocation of defenses to target 2, which will predictably be
attacked. If we defend until target 2 and target 1 become equally attractive
to the terrorist, a discontinuity is introduced, to our detriment.

(red dot). It follows that, in this game, we must never create a degeneracy

that can favor a target more highly valued by us. Instead, we should limit

the defense of target 2 so as to leave it at least slightly more valuable to

the terrorist. What “slightly” means will be determined by our level of

uncertainty as to the terrorists values. We need to err on the side of safety.

Here the important lesson is to not over-defend targets more highly valued

by the terrorist than by us when this may cause the terrorist to switch to a

target more highly valued by us than by him.

The Rest of the Strategy Leaving the value to the terrorist of target 2

slightly higher than that of target 1, we now apply defenses equally to both,

pushing them down as a unit (cf. Figure 8). We can continue until, as before,

we hit a degeneracy that would cause the terrorist to switch to a target that

we value more. Then, we back-off slightly and continue applying defenses

now to all three targets equally.

In like manner, we proceed until our defense resource is exhausted. The

result of this process is shown in Figure 12. Of the targets that we can afford
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Figure 12: Optimal defense for the non-zero sum example. To the extent of
our resources, we defend targets so as to order the terrorists preferences in
the reverse of ours.
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Figure 13: Same as Figure 5, but with the defended targets re-ordered by
the size of the (signed) gap between our and terrorist values. The optimum
defense orders the terrorist’s values (red X’s) into monotonically decreasing
order, while ordering our values (red dots) into monotonically increasing
order.
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to defend, the one most likely to be attacked is, by construction, the one we

care least about; and so-on for the other targets. This is made clearer if we

re-order the four targets by the size of the signed gap between terrorist and

our values, from most positive to most negative, as shown in Figure 13.

Engineered Predictability The key property of Figure 13 is that the red

X’s (terrorist values) are monotonically decreasing, while the red dots (our

values) are monotonically increasing. Any allocation of defenses that makes

this true is, in some sense, an optimal defense. What we would like to do

is to make the magnitude of the slope of the X’s as flat as we dare, so that

the slope of the dots is as large as we can achieve. The terrorist would of

course prefer things the other way around. He can affect our slope by trying

to leave us uncertain as to his actual target values, so that we must err on

the side of conservatism.

The following lessons are learned from this example.

1. It is important that we know as accurately as possible not only the

values of targets, but also, specifically, the gaps between our and the

terrorist’s values.

2. The gaps are what allows us to manipulate our defenses so as to re-

cover a degree of “engineered predictability” as to terrorist intentions.

This contrasts the zero-sum case, where predictability vanishes for an

optimal defense.

3. Exploiting the gaps gives not only predictability, but also decreases our

potential losses by (in the best case) the size of the largest gap.
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6.3.3 Secret selective defense

Up to now, we have made the assumption that the terrorist has perfect

knowledge as to the amount of defense applied to each target. That is the

safest assumption to make, because the defense of many targets is hard to

keep secret; and we might be badly burned if we mistakenly assume secrecy

in our planning.

Within the realm of the engineered predictability that is possible in non-

zero sum games, however, secret additional defensive measures on a small

number of targets may be useful. Secret defenses would be applied only

to targets that, by the overt defense strategy outlined above, have a high

probability of being attacked. The effect would be to push down the red dots

in the Figures, without pushing down the red X’s.

Here we see that by engineering predictability through the optimal appli-

cation (and not over-application) of overt defenses, we also enable the use of

secret defenses as an additional means of reducing losses. Notice that secrecy

is much less useful in the zero-sum case because, absent predictability, we

must apply secret defenses to a large number of equi-probable targets.

Secretly defended facilities are “honey pots”, engineered to credibly at-

tract attacks, because the terrorist recognizes that they are most valuable to

him despite their lesser value to us (the gap); and to reduce losses because

they are more strongly defended than the terrorist recognizes. One might

think that in the zero-sum case, one could intentionally leave, say, one target

“sticking up” as an attractive target, and then defend it secretly. The prob-

lem with this is that the terrorist can recognize the trap: that target should

be better defended, so it probably is better defended by secret defenses. The
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advantage of exploiting non-zero sum gaps is that the optimal overt defense

engineers predictability in a way that is seen as rational by both sides.

This simple expose on game theory leads to the following finding and

recommendation.

Finding: Game theory presents an interesting framework for resource al-

location and planning.

Recommendation: Expertise should be tasked to understand value of tar-

gets from terrorist perspective.
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7 CASE STUDY: BIOTERRORISM THREAT

We will end this report by reviewing what JASON has learned, from more

than a decade of studies, about Bioterrorism. The challenge of predicting a

major bioterrorism event provides a case study for quantitative approaches to

rare events. Although there have been several small-scale events that might

be classified as bioterrorism, there has not yet been a successful large-scale

event. The two best known incidents, both involving the dispersal of anthrax

spores, were the Aum Shinrikyo attack near Tokyo in June 1993 and the an-

thrax letters mailed in the Eastern U.S. in September through October 2001.

The former was unsuccessful only because the terrorist group mistakenly em-

ployed a non-virulent vaccine strain (Keim et al., 2001). The latter might

not be regarded as a bioterrorism event, even though it caused seven deaths

and incited widespread alarm, because it was carried out by a deranged U.S.

government employee rather than a terrorist group. Nonetheless, can these

and other small-scale events be used to predict a large-scale bioterrorist at-

tack? What other quantifiable indices might be included in making such a

prediction? How does one know that a hypothetical large-scale event derives

from the same probability distribution as the observed small-scale events?

Are there a sufficient number and diversity of small-scale events to provide

a meaningful estimate of the probability distribution?

JASON has been studying the problem of bioterrorism for more than

a decade and has conducted ten formal studies on this topic. These stud-

ies have considered aspects of intelligence gathering, capabilities analysis,

surveillance, defense posture, response management, and forensic analysis.

Throughout these studies risk assessment has been an implicit, but never

explicit, component of the analysis. JASON’s thinking has been guided by a
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Figure 14: Biothreat Timeline

notional timeline for a bioterrorism event (Figure 14) that is analogous to the

general timeline for WMD-T developed by the SMA program of the Rapid

Technology Program Office (Figure 1). One notable difference is that JASON

has placed considerable attention on events after the BW attack (after the

“boom”). JASON repeatedly has made the argument that rapid detection

and careful forensic analysis, even if it does not lead to attribution, shapes

one’s ability to gather and interpret intelligence information.

Over the years JASON has gone back and forth, considering both the

pre-event intelligence and post-event forensics aspects of the timeline for

a bioterrorism event. All the while the techniques for gathering intelligence

and conducting forensic analysis have become more sophisticated, and global

political and economic conditions have changed, as presumably have the un-

derlying threats. The earliest JASON studies on bioterrorism predate 9/11

and focused mainly on what attacks might be possible given the principles

of biomedicine and biotechnology and the potential capabilities of terrorist
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groups (Koonin et al., 2000). After 9/11 and the 2001 anthrax letters, the

emphasis shifted to force protection and defense of the homeland in the face

of an unspecified threat (Joyce et al., 2001; Joyce et al., 2002). It soon be-

came apparent that it would not be possible to protect all critical resources

from all possible bioterrorism threats. This conclusion was accompanied by

the sober realization that the U.S. population itself constitutes the most ef-

fective sensor network for a bioterrorism attack – a distributed set of mobile,

self-reporting individuals who themselves are the key assets to be protected.

Subsequently the emphasis changed again, as JASON considered ways to

compress the timeline for recognition of a bioterrorist attack and how to

focus intelligence resources on the subset of potential threats that are the

most plausible (Joyce et al., 2005). Concern over the possibility of a rare

but devastating bioterrorism event persisted, leading JASON to address po-

tential doomsday threats such as synthetic smallpox and pandemic influenza

(Stearns et al., 2005; Block et al., 2007). Most recently, JASON returned to

the problem of forensics analysis for less exotic attacks, such as anthrax and

tularemia, again with the goal of obtaining information to assist in intelli-

gence gathering and threat assessment (Stearns et al., 2008).

In light of the current study it is clear that what is needed is not only

a link between forensics and intelligence, but also a bridge between common

events of low consequence, occasional events of greater consequence, and the

possibility of a rare and devastating attack. The question we come to is

how best to characterize the base of the pyramid? Are there common events

pertaining to bioterrorism, perhaps not involving bioterrorist attacks per se,

that are part of the same probability distribution or can be related to the

probability distribution that encompasses major bioterrorist attacks? For ex-

ample, there is a growing “biohacker” community in the U.S. and abroad that
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dabbles in recombinant DNA technology, genetic engineering, and synthetic

biology in a manner akin to amateur pyrotechnics. Will this community be-

come a source for, or an indicator of, groups having nefarious intent? Does

activity in the biohacker community correlate with developments in the in-

ternational terrorist community? Do small-scale events, whether successful

or not, correlate in a statistical sense with a successful large-scale event?

After all, the unsuccessful anthrax attack by Aum Shinriko was followed two

years later by an attack with sarin gas in the Tokyo subway that killed 12

and injured thousands. It later was learned that Aum Shinriko attempted to

obtain a virulent strain of Ebola virus, which might have been the basis for

a large-scale event. Can one relate terrorist activities other than chemical

and biological terrorism, such as planting IEDs or conducting suicide bomb-

ings, to the probability distribution that encompasses a major bioterrorism

attack?

In order to develop a framework for relating actual low-level events to as-

yet-unseen high-level events, it will be useful to characterize a middle ground

along the same axis. For example, one could compile information pertaining

to bioterrorist activity of any kind, including hoaxes, expressions of intent and

the acquisition of restricted materials, and attempt to correlate these data

with failed attempts and successful small-scale attacks. This information

may bridge the gap to more infrequent events on a somewhat larger scale,

which in turn may indicate the probability of a rare and more devastating

event.

There often is a presumption that terrorist groups will make every at-

tempt to conceal their activities with regard to bioterrorism. However, as

was the case in Iraq under Saddam Hussein, there may be incentives for an

organization to overstate it’s capabilities for either internal or external pur-
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poses. Furthermore, as discussed in Section 4.1.1, observation may trigger

active deception, which could understate, overstate, or otherwise distort the

true signal. Such distortions will degrade the predictive value of a statistical

model, and may result in systematic errors that prevent meaningful extrap-

olation from common to rare events. This distortion can be mitigated by

focusing on the middle ground, which links a broad range of observables to

a modest number of bona fide events.

There is little doubt that a validated statistical model which links a rich

database to a continuum of progressively rarer events would have utility in

shaping one’s posture with regard to the bioterrorism threat. Especially

if that model were coupled to sensitivity analysis, it would focus intelli-

gence gathering and forensic studies on those areas that would strengthen

the model, and would guide the allocation of resources for asset protection

and rapid response toward options that are expected to provide the greatest

return on investment. It is likely, but needs to be demonstrated through

the statistical model, that data gathering itself will have a high return on

investment because it will enable the model to be refined, which will allow

one to make ever smarter investments.
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A APPENDIX: Black Swans

We frequently encountered references to “Black Swans” in our study. The

Black Swan metaphor was popularized by a recent book The Black Swan:

The Impact of the Highly Improbable by Nassim Taleb [39]. The metaphor

has clearly had great impact on how people are thinking about rare events,

so we considered Taleb’s argument carefully.

Taleb’s argument is that many high-magnitude rare events (Black Swans)

are fundamentally unpredictable, and that efforts to predict them are futile,

dangerous, and even intellectually fraudulent – particularly when using sta-

tistical models based on past observations, and especially if the statistical

model assumes Gaussian variance around some mean event size. His term

“Black Swan” is a reference to a (supposed) European belief that all swans

were white until black swans were discovered in Western Australia in the

1700’s. Black swans came to be used in philosophy as an example of a logical

failure of inductive reasoning – that is, just because all previously observed

swans are white does not necessarily mean that the next swan will be white.7

Taleb makes important points but carries his argument too far. It is

unfortunately true that some mathematical models for risk forecasting as-

sume Gaussian variance despite substantial countervailing real-world evi-

dence. Taleb’s criticism of economic risk models (such as the Black-Scholes-

Merton options pricing model, which assumes that market prices make Gaussian-

distributed moves) is particularly poignant given the world’s current eco-

7This old philosophical argument is a little hard to digest from a probabilistic inference
perspective. If we draw N white balls from an urn that might or might not contain black
balls too, and if we assume we have no informative prior knowledge about the probability
of white versus black balls might be, then the mean posterior estimate of the probability
that the next ball drawn will be white is N+1

N+2 , not one.
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nomic situation. But though this is damning criticism of specific models’

faulty assumptions, it is not a damning general criticism of the careful use

of modeling to help predict risk.

Even in the original case of actual black swans, anyone sensible would

have hesitated to extrapolate an observation of N white European swans to

a prediction of zero black Western Australian swans. This obviously makes

an assumption that Australian swans will be “drawn from the same distribu-

tion” as European swans, i.e., that Australian species are expected to be the

same as European species. Thinking even for a second about the geographic

distribution of species (especially strange Australian species), it doesn’t take

a wildlife biologist to doubt this assumption. In fact, black swans are a dif-

ferent species specific to Western Australia, Cygnus atratus. The black swan

metaphor itself fails one of our key tests of predictive modeling – we would

have worried that the observed (European swan) data are not likely to be

adequately representative of the future (Australian swan) observations we

want to predict.

Taleb includes the 9/11 attacks as an example of a “Black Swan” event. If

we assumed that the magnitude of terrorist attacks were Gaussian-distributed,

9/11 would indeed appear to be an unforeseeably extreme outlier. In Sec-

tion 3.3 we saw that the empirical data, though, says that the observed

frequency/magnitude data may fit a power law distribution, and that 9/11

may not be a significant outlier in that distribution. Taleb is wrong that a

terrorist event of 9/11’s magnitude was fundamentally unforeseeable.

But Taleb is right that we should keep models’ assumptions carefully in

mind when we make any plans. In our power law model example, we already

noted that we should hesitate before assuming that all future events will

continue to be drawn from the same distribution. There is at least one class
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of high-magnitude terrorist events that have not yet been observed but which

clearly has a finite unknown probability: terrorist use of a nuclear weapon.

Though we can draw a number of useful and relevant conclusions about the

expected frequency and magnitude of future attacks using the same modali-

ties as past attacks from the power law distribution, it would be dangerous

to assume that the probability of extreme events is as low as the model pre-

dicts, because we (thankfully) have no data yet for the frequency/magnitude

distribution of terrorist events using nuclear weapons. Taleb’s recommenda-

tion of not overly relying on models based on past data, making subjective

expert assessments of where additional unpredicted future risk might lurk,

and making conservative investments to ameliorate the impact of unforeseen

(even unforeseeable) negative “Black Swans” is fundamentally sound advice.
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B APPENDIX: Rare Event Power Law Cal-

culations

Section 3.3 presents some results based on the study in Clauset et al˙ [31].

In this Appendix, we give some details behind those calculations. The reader

is referred back to Section 3.3 for the discussion of appropriate use of such

calculations.

B.1 Is 9/11 an Outlier?

We stated that the probability of an event of 9/11 magnitude or greater

in the 1968-2006 period was about 23%, according to the fitted distribution

in Clauset et al. [31]. This may contradict one’s intuition when reviewing

the location of the 9/11 data point in Figure 5. However, it is important to

remember this is not the tail of a Gaussian distribution, but of a heavy tailed

distribution.

To calculate this probability, we need to consider the complementary

cumulative distribution function for the power law, which is

P (X ≥ x) =
C

(α− 1)
x−(α−1),

where C is a normalization constant. Clauset et al. [31] state α = 2.38

but they don’t give C. Any point from their fitted line suffices to estimate

C. Using the x-intercept of the graph, which appears to be at about x =

1100, P (X ≥ 1100) = 10−4, we solve for C = 2.17. Given C and α, the

probability P (X ≥ x) for any x can be obtained.
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For the 9/11 point, x = 2749,

P (X ≥ 2749) =
2.17

(2.38− 1)
2749−(2.38−1)

= 0.0000282.

There are N=9101 events in the dataset. Therefore, the expected number of

events with X ≥ x is

E(X ≥ x) = NP (X ≥ x)

= 9101(0.0000282)

= 0.257.

The probability of one or more events greater than 2749 killed in the dataset

of 9101 events is then given by a Poisson distribution,

1− e−NP (X≥x) = 1− e−0.257

= 0.226.

This, finally, is the relevant probability. So, given the power law fit in [31],

in the 9101 events over 38.5 years, the estimated probability of seeing one or

more events of 9/11 New York magnitude is about 23%.

One way to double check this calculation is the following. A perfect

fit would have x ∼= 1100 as the maximal event. But the 9/11 New York

point is at x = 2749, 2749
1100

= 2.5-fold higher than expected. In a power

law complementary cumulative distribution function, for every multiplicative

factor m that you increase x by, the probability P (X ≥ x) decreases by a

factor of m−(α−1). So, if α = 2.38, a 2.5-fold increase in x reduces P (X ≥ x)

by a factor of only about 0.28. This means that the point x = 2749 is only

four-fold less likely than if it were perfectly on the power law line, not enough

to consider it to be a significant outlier.
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B.2 Odds of 9/11 Scale Event in Next Decade

To compute the change of a 9/11 scale event in the next decade, we again

use the complementary cumulative distribution function P (X ≥ x) for the

power law, with α = 2.38 and C = 2.1. Assuming 2400 events per decade,

we calculate the expected number of rare events of at least 9/11 magnitude

occurring in the next ten years, as:

E(X ≥ x) = 2400× P (X ≥ 2749)

= 0.0676.

The probability of one or more events greater than 2749 in the next

decade is

1− e−.0676 = .0654.

This suggests that another 9/11-scale event in the world is unlikely but not

improbable in the next ten years, with a probability of about 7%.
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C APPENDIX: Technical Note on Entropy

Imagine we have a discrete random variable with K possible values; as

already mentioned one example might be the probability that a biological

terror incident will originate from a group centered in country k, where k

has a value between 1 and K. We have some observation of such incidents

but not enough to trust that the simplest estimate pk = nk/N (nk = # of

observed incidents from country k, N = total number of recorded incidents)

is accurate. In particular, there may be many bins that have nk = 0, but

it might be foolish to conclude that all these probabilities are actually zero

if the number of data points is small. The basic idea that will emerge from

the mathematics is the importance of bins with nk > 1; these can be called

coincidences [1, 47]. Imagine there were no coincidences at all. Then, a

reasonable assumption would be that the distribution is completely uniform

and that some bins are at zero occurrences simply because N < K.

One way to characterize this distribution is by considering the entropy

S ≡ −Σ pk log2 ρk.

For the uniform case, pk = 1
k
, Smax = log2 K. This, of course,is precisely

the number of bits needed to completely specify which country was at fault

for any particular instant, in the absence of any useful a priori information.

Conversely, imagine that almost all observed events have occurred in a few

bins. This gives much more confidence that the distribution really is peaked

at a few hot spots and that the entropy is significantly less than Smax. A

natural definition of predictability [7] is just Smax−S. Estimating the entropy

from the data is of high priority.

Now for the mathematics. We will follow the discussion of Nemenman [1]
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who developed these ideas for neural information processing, but which we

feel have more general applicability. The staring point is use of the Bayesian

method to estimate the

P (~p;~n) =

∏K
i=1 p

ni
i P0(~p)∫ 1

0 dKp
∏K

i=1 p
ni
i P0 (~p)

.

The distributed P0(~p) is the prior distribution placed on the probability

vector ~p. Here, ~n is the vector of observations which obeys
∑k

i=1 ni = N .

The left-hand side of the equation is our a posteriori estimate given the

observations. A standard choice for the prior distribution is

Pβ(~p =
1

Z (β)
δ

(
1−

K∑
i

pi

)
K∏

i=1

)pβ−1
i ,

where the normalization factor Z(β) = ΓK(β)/Γ(Kβ). This has the virtue

that the mean occupancy of each bin, as determined by the a posterior prob-

ability distribution, is just

< pi >=
ni + β

N +Kβ
.

This is similar to artificially adding observations of number β to each bin,

This general notion subsumes specific choices in the literature; β = 1 (intro-

duced originally by Laplace [48]), β = 1/2 (due to Jeffrey’s [49]) and β = 1/k

(due to Schurmann and Grassberger [50]).

Nemenman’s basic insight is that this usual procedure is not capable of

giving a good estimate for the entropy. This is because the a priori distribu-

tion of the entropy for any fixed value of β is highly peaked in the large K

limit. Thus, the prior distribution imposes a pre-determined entropy value

on the final inferred result and does not allow for a fair estimation based

on the data. In particular, the entropy is close to the maximal entropy for

any finite value of β in the large K limit. To fix this, he generalizes this
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prior distribution to a Dirchelet mixture of priors. He defines the weighted

distribution

P̃β =
1

Z
δ(1−

∑
pi)

K∏
i=1

pβ−1
i

dξ

dβ
,

where ξ(β) = ψ0(kβ + 1) − ψ0 (β + 1) and where the function ψ0 is the

logarithmic derivative of the gamma function ψ0(x) ≡ d
dx

ln Γ(x). The

instruction now is to define the overall probability distribution as an integral

over β with this distribution. It can be shown that this choice leads to an

almost uniform distribution of a priori entropy probability (between 0 and

Smax). Z is now an overall normalization factor.

The basic approach from here on in requires determining the value of β

which dominates the a posterioi probability distribution. This leads [1] to

the basic equation

1

K

∑
i;ni>0

ψ0(ni + β∗)− K1

K
ψ0(β

∗)− ψ0(β
∗K +N) = 0.

Here K1 is the number of bins that have one or more counts. This can

be solved to determine β∗, which then yields an estimate for the entropy

< S >= ξ(β∗). At the same time, we can get an estimate for the tail of the

distribution (i.e., the probability of the rarest of the rare events)

Pi ∼
(
β B(β, kβ − β)(k − i+ 1)

k

)1/β

k − i << k,

where B is the incomplete B β function.

Laying aside all the details, the basic structure of the solution depends on

the difference between K1 and N . If K1 = N , i.e., there are no coincidences

at all, the solution predicts a finite β∗ and S ≈ Smax. If K1 < N , a non-trivial

solution exists with the selected value of β decreasing as N −K1 decreases,

leading to a significant lower entropy estimate and a concomitantly higher

predictability.
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